Russian Belarusian English German Italian Polish Portuguese Ukrainian
Вы здесь: ГлавнаяПоказать содержимое по тегу: двигатель

Воздушный фильтр дизельного двигателя - это фильтрующий элемент воздухоочистителя. Воздушный фильтр уменьшает количество твердых частиц пыли, поступающих в дизельный двигатель. Изготавливают воздушный фильтр из волокон целлюлозы. Механическую прочность и влагостойкость воздушный фильтр приобретает из-за гофрированной формы и химических пропиток. Согласно результатам исследований, за 10 лет эксплуатации через автомобиль с дизельным двигателем проходит от нескольких граммов до нескольких килограммов твердых частиц пыли. Речь идет о частицах, как естественного, так и искусственного происхождения. Так же воздушный фильтр уменьшает шум, распространяющийся по впускному тракту. Воздушный фильтр предотвращает образование пылевых отложений в системе наполнения цилиндров воздухом (датчик массового расхода воздуха, турбина и другие детали). Засоренный фильтрующий элемент увеличивает сопротивление всасываемого воздуха, тем самым уменьшая количество поступающего на смесеобразование воздушного потока. Мощность дизельного двигателя снижается, а расход дизельного топлива увеличивается. С этого момента воздушный фильтр из помощника превращается во врага.

Замена воздушного фильтра в дизельном двигателе процесс необходимый и регулярный. Эксплуатация дизеля в условиях повышенного запыления и загрязненного воздуха сокращает период рекомендованный заводом изготовителем. Автосервис «Твой Дизель» советует соблюдать интервал замены воздушного фильтра в автомобиле с дизельным двигателем 8 - 10 000 км. пробега. Работа замены воздушного фильтра не требует особых навыков. Данную процедуру Вы сможете произвести самостоятельно. В том случае, если по каким-то причинам у Вас не получается определить местонахождение воздушного фильтра или Вы не можете справиться с креплением корпуса воздушного фильтра. Остановитесь!!! Обратитесь за помощью к профессионалам!!!! Автосервис «Твой Дизель» произведет работу замена воздушного фильтра в кратчайшие сроки с соблюдением всех рекомендаций завода-изготовителя. Новый воздушный фильтр Вы сможете приобрести в отделе запасных частей автосервиса «Твой Дизель». Отдел запасных частей проинформируют Вас о рекомендованном типе воздушного фильтра, и сможет предложить как оригинальные, так и неоригинальные (лицензированный дубликат) детали.

Опубликовано в Сервис

Одна из особенностей транспортного средства с дизельным двигателем - это топливный фильтр. Не для кого не секрет, что замену топливного фильтра на дизельном автомобиле можно доверить не каждому автосервису. В автосервисе «Твой Дизель» специалисты обладают большим опытом работы. Мы знаем, как Вам дорого ваше время, поэтому работу замены топливного фильтра в дизельном двигателе мы выполняем в кратчайшие сроки, заметьте - за разумные деньги!

Для того чтобы Ваш дизельный автомобиль безотказно работал, необходимо помнить о качестве применяемого дизельного топлива. Проблема заключается в том, что даже небольшое отклонение топлива от нормы может привести к снижению моторной мощности (как правило, это трущиеся детали двигателя) и повышенному расходу топлива (износ топливной аппаратуры). К сожалению, в настоящее время качество дизельного топлива оставляет желать лучшего. В результате транспортировки, хранения и реализация дизтопливо подвергается многим воздействиям, из-за которых засоряется. А конечный итог оказывается у Вас в топливном баке во время заправки.

Топливный фильтр дизельного автомобиля предназначен для фильтрации топлива перед его подачей в топливную магистраль. Следует обратить внимание, что дизельный топливный фильтр сдерживает не только механические загрязнения, но и выполняет функцию сепаратора при наличии воды в топливе. Негативное влияние на работу дизельного двигателя в целом может оказать засоренный топливный фильтр. Работа дизельного двигателя станет не- ровной, расход топлива увеличится, а мощность мотора уменьшится. В этом случае Вы едете в автосервис и тратите деньги на диагностику выявления неисправности. А всего-то надо регулярно менять топливный фильтр!

Своевременная замена топливного фильтра на Вашем автомобиле сбережет время и деньги. Автосервис «Твой Дизель» рекомендует интервал замены топливного фильтра на автомобиле с дизельным двигателем 8 -10 000 км. пробега. И в самом деле, если этого не делать, то узлы системы подачи топлива (насос высокого давления и форсунки) придется ремонтировать или менять. Особого внимания и заботы требуют автомобили с электромеханические и пьезоэлектрические форсунками, а также насос – форсунки. Попадание незначительных частиц пыли и воды для них губительно. Замена или ремонт топливной аппаратуры дело весьма хлопотное и дорогостоящее. Так, что будьте, пожалуйста, внимательны!

Для гарантированно эффективной работы топливной системы и дизельного двигателя необходимо производить работу замены топливного фильтра опытными специалистами. И в самом деле, такая работа как замена топливного фильтра на автомобиле с дизельным двигателем требует определенных навыков, а так же использования сменных фильтрующих элементов, несомненно высокого качества. В автосервисе «Твой Дизель» Вам помогут подобрать топливный фильтр для Вашего дизельного автомобиля и проконсультируют по всем дополнительно интересующим вопросам. Вы по достоинству оцените высокий уровень нашего автосервиса, а также качество фильтрующих элементов. Доказательством станет высокие эксплуатационные характеристики Вашего дизельного двигателя и автомобиля в целом.

Опубликовано в Сервис

Прежде всего, хотелось бы отметить, что для наших дизельных автолюбителей замена салонного фильтра в дизельном двигателе считается делом бессмысленным. Без всяких вопросов заботливый владелец дизеля регулярно меняет воздушный фильтр, для того чтобы его любимцу было чем дышать. Но мало кто размышлял на тему: А чем же каждый день дышит сам водитель дизельного автомобиля?

К сожалению, в настоящее время воздух которым мы дышим, содержит огромное количество вредных выбросов и токсичных веществ. Остановить всю эту гремучую смесь, и стать единственным барьером на пути к Вашим легким, сможет только салонный фильтр. Салонный фильтр очищает и препятствует проникновению частиц пыли и грязи в салон дизельного автомобиля. Его основная задача впитать молекулы газа и защитить испаритель кондиционера от механических загрязнений. Все салонные фильтрующие элементы имеют гофрированную форму, из-за чего площадь поглощаемой поверхности становится больше и позволяет увеличить эффективность фильтрации. Фильтра, для очищения воздуха в салоне дизельного автомобиля, различаются по типам:
•Первый тип это пылепоглощающий фильтрующий элемент. Пылепоглощающий салонный фильтр изготавливают из тонковолокнистого не тканого материала, и пропитывается антигрибковым и антимикробным составом. Но имейте в виду, что пылепоглощающий фильтр очистит, воздух салона Вашего дизельного авто, лишь от проникновения мелкой пыли и цветущей пыльцы!

•Второй тип это фильтрующий элемент из угольного волокна. Салонный фильтр из угольного волокна имеет многослойную структуру полимерного материала с антибактериальной пропиткой, в основу которого вплетено активированное сорбирующее волокно. Фильтр из угольного волокна поглотит частицы пыли и сажи, а так же впитает другие отравляющие вещества, содержащиеся на дороге.

•Третий тип это угольный фильтрующий элемент. Угольный салонный фильтр так же произведен из синтетического материала и пропитан антибактериальными средствами, но для улучшения впитывающих характеристик между слоями фильтрующего материала напыляют частицы активированного угля. Салонный угольный фильтр позволяет максимально абсорбировать концентрацию газообразных выбросов и прочих ядовитых веществ в салоне дизельного автомобиля.

Именно поэтому, если Вы дорожите своим здоровьем и заботитесь о самочувствии своих пассажиров, то выбор качественного салонного фильтра это важная задача! В отделе запасных частей автосервиса «Твой Дизель» Вы сможете подобрать и приобрести качественные салонные фильтра, для Вашего дизельного автомобиля. Мы предлагаем Вам как оригинальные, так и не оригинальные, салонные фильтра от производителей гарантирующих самые высокие эксплуатационные показатели, по максимально доступным ценам.

По мере накопления вредных для здоровья веществ сам салонный фильтр может стать источником повышенной опасности. Не откладывайте замену на потом, ведь не производительная работа салонного фильтра, это не только ухудшение микроклимата в салоне Вашего дизеля, но и размножающиеся с максимальной скоростью бактерии. Износ салонного фильтра определяется легко, прежде всего, снижается эффективность работы кондиционера летом и продуктивность системы отопления зимой. После этого в салон пробиваются неприятные запахи, а стекла с внутренней части начинают потеть. Очень важно, чтобы замену салонного фильтра на автомобиле с дизельным двигателем осуществлялась своевременно. Автосервис «Твой Дизель» рекомендует интервал 8-10000 км пробега или хотя бы 1 раз в год. Руководствуясь инструкцией по эксплуатации, Вашего дизельного автомобиля, можно определить место его установки, а так же узнать последовательность действий при его замене. Несмотря на то, что замена салонного фильтра в дизельном двигателе операция несложная, лучше ее доверить квалифицированным специалистам. А принимая во внимание, что в большинстве дизельных автомобилей салонный фильтр встроен в систему вентиляции и отопления, то зачастую при самостоятельной замене возникают непредвиденные трудности.

Опубликовано в Сервис

Густой черный дым из выхлопной трубы, грязная ветошь и неприятный запах — давно в прошлом. Дизельные моторы сегодня — это экономичность, чистота, высокая мощность и уникальные динамические характеристики, которые позволяют дизельным автомобилям TDI выигрывать не только «светофорные» гонки, но и престижные кольцевые, в числе которых «24 часа Ле Мана». Так в чем же прелесть современного дизельного мотора и чем он отличается от своих «древних» собратьев?

Начнем с истоков. Сам по себе дизельный мотор не такой уж и древний — патент на двигатель внутреннего сгорания с «воспламенением от сжатия» был получен немецким изобретателем Рудольфом Дизелем в 1893 году, то есть спустя 33 года после изобретения самого двигателя внутреннего сгорания, работавшего, кстати, не на бензине, а на газе. Суть изобретения Дизеля заключалась в том, что топливо воспламенялось не от искры, а вследствие высокой температуры воздуха в цилиндре. В разогретый посредством сжатия воздух подавалось дизельное топливо, которое самопроизвольно воспламенялось. Но изобретение Рудольфа Дизеля нашло применение не сразу, а первый экспериментальный двигатель и вовсе взорвался, чудом не убив собиравших его механиков. Однако работы не прекращались, и вскоре появились работоспособные установки, которыми заинтересовались во многих отраслях промышленности. Из-за огромных размеров и массы первые дизельные двигатели были стационарными, затем их стали использовать в судостроении, и лишь в 1924 году дизель был установлен на грузовые автомобили, работающие на «тяжелом топливе». При плотности 0,85 г/см3 дизтопливо действительно тяжелее бензина, плотность которого составляет 0,72-0,75 г/см3.

 

pezo inzhektor tdi 01

Пьезоинжекторы

Эти устройства впрыскивают четко дозированное количество топлива в цилиндры двигателя менее чем за 0,2 миллисекунды. Для сравнения: человеческому веку требуется 200 миллисекунд для того, чтобы моргнуть.

 

Литр на 100 км

История дизельных моторов Audi началась в 1980 году, когда под капотом Audi 80 появился атмосферный 54-сильный дизель объемом 1,6 литра. Затем инженеры и конструкторы компании взялись за решение самой сложной задачи: разработать компактный и мощный дизельный двигатель с прямым впрыском. В 1989 цель была достигнута и в производство запустили первый в мире турбодизельный двигатель, получивший обозначение TDI. Пятицилиндровый агрегат объемом 2,5 литра с турбонаддувом и промежуточным охлаждением нагнетаемого воздуха имел мощность 120 л.с. и обеспечивал крутящий момент 256 Нм при 2250 оборотах в минуту.

Турбодизельные двигатели сразу же начали пользоваться успехом. Новая на тот момент технология значительно опережала достижения конкурентов как по динамике езды, так и по расходу топлива.

 

engine audi 42tdi

Мощь, скорость, экономичность

Современные двигатели TDI практически ни в чем не уступают своим бензиновым собратьям. А в чем-то даже превосходят их.

 

Компания Audi доказала потрясающую экономичность первого TDI, организовав зрелищное путешествие, которое побило все рекорды экономии топлива. Автомобиль Audi 100 TDI проехал 4 814,4 километра по девяти европейским странам на одном топливном баке. При средней скорости 60,2 км/ч средний расход топлива составил всего лишь 1,76 л на 100 километров!

Как это работает

Процесс сгорания топлива в цилиндре дизельного мотора — это своего рода взрыв. Взрыв управляемый, высокоточный. Точность этого взрыва на многих моторах обеспечивается механическим устройством, именуемым топливным насосом высокого давления (ТНВД). Такие насосы, работая в паре с обычными пружинными форсунками, впрыскивают топливо в цилиндры под давлением 20-40 Бар.

Эволюция дизельных моторов в конце концов привела к тому, что ТНВД лишь создает давление в общей топливной магистрали, а моментом впрыска управляет электроника — механические форсунки уступили место пьезоэлектрическим. Такая система питания получила название Common Rail (в дословном переводе с английского — общая магистраль). А на некоторых моторах применяются еще и насос-форсунки. То есть давление в каждой форсунке, впрыскивающей топливо в цилиндр по команде электроники, создает свой маленький насос. Насос маленький, а давление большое — в современных моторах оно составляет уже 1600, а в некоторых и 2000 Бар. Зачем конструкторы постоянно увеличивают давление впрыска топлива? Все дело в том, что в дизельном моторе процесс образования смеси очень короткий — при частоте вращения коленчатого вала 2000 об/мин на перемешивание топлива с воздухом отводится всего 3-4 миллисекунды, а с повышением частоты вращения это время становится еще меньше.

За такой короткий период приготовить однородную смесь топлива с воздухом можно, только увеличив давление впрыска. К тому же при низком давлении топливо будет сгорать не полностью, уменьшая эффективность работы и увеличивая количество вредных выбросов.

commonrail tdi

Common Rail

Новые материалы и электронное управление обеспечивают прогресс в таких областях, как динамика, плавность и тишина работы, расход топлива и снижение вредных выбросов.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Все современные легковые дизели TDI от Audi сегодня имеют турбонаддув (самый эффективный способ увеличения мощности) и Common Rail. Без этих систем просто невозможно обеспечить соответствие дизельного двигателя жестким нормам токсичности. Так же как невозможно создать карбюраторный бензи- новый мотор, который удовлетворял бы строгим нормам Евро 4.

Однако для российского рынка введение жестких европейских норм токсичности обернулось тем, что ряд фирм наложили вето на поставку дизельных автомобилей в Россию. Дело в том, что современные дизельные моторы, удовлетворяющие новым экологическим нормам, предъявляют повышенные требования к качеству топлива. И больше всего нареканий вызывает содержание серы...

vprysk tdi

Быстрее мгновения

Лепестки хищного растения дионея способны захлопнуться менее чем за полсекунды, которых хватает для того, чтобы поймать муху. Надувная подушка безопасности полностью раскрывается всего лишь за 20 миллисекунд. Но даже этот краткий миг чересчур долог для разработчиков дизельных двигателей компании Audi. В двигателе 3,0 TDI топливо впрыскивается в каждый из шести его цилиндров менее чем за 0,2 миллисекунды.

Серный вопрос

В России сейчас допускается использование дизтоплива с содержанием серы 0,05%, а по европейским нормам ее в топливе должно быть на порядок меньше — не более 0,005%! Чем же так опасна сера? Прежде всего, тем, что после сгорания оксиды серы соединяются с водой и образуют серную и сернистую кислоту. Ущерб экологии налицо. К тому же сера снижает эффективность работы каталитического нейтрализатора.

Однако все больше нефтеперерабатывающих компаний переходят на выпуск дизельного топлива, удовлетворяющего нормам Евро 4. Партнером Audi Russia с 2008 года стала российская компания «Лукойл». На сегодняшний день дизельное топливо производства «Лукойл» — самое современное в России, соответствующее европейскому стандарту ЕN-590 версии 2004 года (Евро-4). Это значит, что серы в таком топливе не более 0,005%, а цетановое число не ниже 51 единицы.

Цетановое число — обратный аналог октанового числа для бензина. Чем оно выше, тем больше склонность топлива к самовоспламенению или детонации, которая, в отличие от бензинового мотора, не только не вредна, но просто необходима для нормальной работы дизельного двигателя.

Еще одна проблема — повышенная вязкость дизельного топлива при низкой температуре. Все видели, как в мороз на обочине стоит КамАЗ, под которым ползает водитель с паяльной лампой. Заправился летней соляркой... Дело в том, что зимой использовать летнее топливо рискованно — температура в любой момент может опуститься ниже «критической отметки». И тогда попытки запуска могут привести к выходу из строя топливной аппаратуры, которая не может долго работать «всухую». В состав дизельного топлива «Лукойл» входят компоненты, улучшающие низкотемпературные свойства топлива. А смена топлива на сети заправок в соответствии с сезоном строго контролируется.

Впрочем, зимний запуск дизельного автомобиля можно облегчить, установив предпусковой подогреватель. Он предлагается в качестве опции почти на все модели Audi. Компания Audi, которая одной из первых начала официальные поставки дизельных легковых автомобилей на российский рынок, делает их все привлекательнее для покупателя.

Так, в прошлом году межсервисный интервал для дизельных автомобилей Audi TDI был увеличен. Теперь он составляет, как и для бензиновых версий, 15000 км. Да и выходные характеристики дизельных Audi порой даже лучше, чем бензиновых. Так, дизельный Audi Q7 4,2 TDI разгоняется до 100 км/ч на секунду быстрее, чем бензиновый Audi Q7 4,2 FSI (6,4 с против 7,4 с). При этом средний расход топлива у дизельной модификации почти на два с половиной литра меньше. А в 2008 году под капотом Audi Q7 появился новейший шестилитровый турбодизель V12 TDI — первый в мире двенадцатицилиндровый турбодизель под капотом легкового автомобиля. Мощность — 500 л.с., крутящий момент — 1000 Нм!

v12 tdi

TDI: проверено Ле Маном

Болиды Audi R10 лидируют на самых сложных трассах. Технологии спортивных побед теперь доступны и «гражданским» автомобилям.

Похоже, что в скором времени доля дизельных автомобилей на отечественном рынке будет расти. Медленно, но верно Россия ужесточает нормы токсичности, что неизбежно приведет к законодательному улучшению качества дизельного топлива. В этом году вступили в силу нормы Евро 3, в 2010 году нас ждет Евро 4. Да и постоянное удорожание бензина подталкивает покупателей к выбору дизельного автомобиля. Европа этот выбор сделала — там доля дизельных машин давно перевалила за 50%.

Опубликовано в Технологии

Большинство систем пуска двигателей внутреннего сгорания содержат электродвигатель постоянного тока (двигатель стартера) с питанием от аккумуляторной батареи автомобиля, механизм включения, устройство управления и соответствующую электропроводку. Так как частота вращения коленчатого вала двигателя, необходимая для его пуска (для бензиновых двигателей около 60-100 мин-1, для дизельных двигателей около 80-200 мин-1, намного ниже, чем частота вращения двигателя стартера, привод от стартера к двигателю осуществляется посредством пары шестерен (шестерня на валу стартера и зубчатый венец маховика двигателя) с передаточным отношением от 10:1 до 20:1.
Влияющие переменные
Величина крутящего момента на коленчатом валу двигателя и минимальная частота его вращения, необходимые для пуска двигателя, зависят от типа двигателя, его рабочего объема, числа цилиндров, степени сжатия, потерь на трение, дополнительных нагрузок, создаваемых при работе двигателя, системы управления подачей топлива, сорта используемого масла и температуры двигателя.
Потребные значения крутящего момента и частоты вращения для пуска двигателя возрастают при снижении температуры, что ведет к необходимости повышения мощности стартера. Минимальная температура, при которой обеспечивается пуск двигателя, является основным фактором, определяющим потребную мощность при пуске.

starter 01 

Стартеры

Стартер состоит из электродвигателя, шестеренчатого привода, обгонной муфты (муфты свободного хода).

1 - соленоид и пусковое реле; 2 - рычаг включения стартера; 3 - обгонная муфта с ведущей шестерней; 4 - шестеренчатый редуктор (планетарная передача); 5 - якорь; 6 - постоянные магниты

Шестерня на валу электродвигателя стартера сначала начинает взаимодействовать с зубчатым венцом маховика двигателя. После пуска двигателя частота вращения шестерни стартера становится выше частоты вращения вала электродвигателя стартера, что может привести к выходу стартера из строя из-за возникающего центробежного усилия. Для предотвращения этого нежелательного явления между шестерней стартера и его якорем устанавливается обгонная муфта, которая отключает стартер от двигателя, как только частота вращения коленчатого вала начинает превышать частоту вращения вала стартера.

 

Электродвигатель стартера

В большинстве случаев в стартере применяется электродвигатель постоянного тока с последовательным возбуждением, характеризуемый высокой частотой вращения без нагрузки, что поддерживает необходимую частоту вращения коленчатого вала двигателя во время его пуска. Прогресс, достигнутый в сфере технологии производства ферритов, позволяет использовать в стартерах электродвигатели с возбуждением от постоянных магнитов, стойких к размагничиванию. Стартеры с якорями, вращающимися с более высокими скоростями, но развивающими меньший крутящий момент, имеют меньшие размер и массу. Для них становится возможным увеличение передаточного отношения между двигателем и якорем стартера. Диаметр зубчатого венца маховика не может быть увеличен и поэтому увеличение этого передаточного отношения осуществляется путем использования дополнительной передаточной ступени (стартеры с шестеренчатым редуктором).

 

Виды стартерных приводов

 

starter 02

Стартер с инерционным приводом: 1 - выключатель стартера: 2 - пусковое реле; 3 - обмотка возбуждения; 4 - зубчатый венец маховика двигателя; 5 - шестерня стартера с обгонной муфтой; 6 - спиральные шлицы; 7 - якорь; 8 - аккумуляторная батарея
Инерционный привод, применяемый, например, в газонокосилках, является самой простой формой шестеренчатого привода. Обгонная муфта перемещается на валу якоря на спиральных шлицах при вращении этого якоря. При включении стартера ненагруженный якорь начинает свободно вращаться. При этом шестерня стартера и обгонная муфта еще не вращаются из-за своей инерции и выталкиваются вперед по шлицам. Как только шестерня входит в зацепление с зубчатым венцом маховика, она удерживается от вращения и проталкивается вперед еще дальше до контакта со стопорным кольцом. В это время крутящий момент от якоря электродвигателя стартера передается на двигатель через обгонную муфту, шестерню стартера и зубчатый венец маховика.
Как только коленчатый вал начинает вращать шестерню стартера со скоростью, превышающей скорость вращения якоря стартера, обгонная муфта прерывает передачу усилия от двигателя на эту шестерню и препятствует ускорению вращения якоря. При этом обгонная муфта и шестерня стартера перемещаются по спиральным шлицам вала назад. Этот процесс разъединения шестерни стартера и зубчатого венца маховика усиливается посредством возвратной пружины, которая обеспечивает удержание шестерни в положение разъединения от двигателя при неработающем стартере.

 

Стартер с приводом предварительного включения:

starter 03

1 - выключатель стартера; 2 - пусковое реле; 3 - обмотка возбуждения; 4 - возвратная пружина; 5 - рычаг включения; 6 - зубчатый венец маховика двигателя; 7 - шестерня стартера с обгонной муфтой; 8 - буферная пружина; 9 - спиральные шлицы; 10 - якорь; 11 - аккумуляторная батарея; Е, Н - обмотки

В стартерах такого типа зацепление шестерни стартера с зубчатым венцом маховика двигателя обеспечивает соленоид, имеющий контакты включения стартерного тока. При замыкании выключателя стартера ток поступает в обмотку Н (см. рис. внизу), течет по цепи с последовательно включенными в нее втягивающей обмоткой Е и электродвигателем стартера. Соленоид захватывает обгонную муфту и шестерню и перемещает их вперед посредством рычага включения и буферной пружины.
Если зубья шестерни оптимально входят во впадины между зубьями венца маховика, контактный мостик пускового реле замыкает контакты и на электродвигатель стартера начинает поступать полное напряжение. Если зубья шестерни не сразу входят во впадины между зубьями венца маховика, рычаг включения сжимает буферную пружину, контакты реле замыкаются и электродвигатель проворачивает шестерню до тех пор, пока ее зубья не войдут в зацепление с зубьями венца маховика и буферная пружина не сместит шестерню и обгонную муфту вперед.
При прекращении подачи тока к обмотке соленоида возвратная пружина перемещает сердечник соленоида и шестерню вместе с обгонной муфтой в их первоначальное положение.

 

Стартер со скользящей шестерней:

starter 04

1 - выключатель стартера; 2 - управляющее реле: 3 - разобщающий рычаг; 4 - шестерня; 5 - зубчатый венец маховика; 6 - переключающий контакт; 7 - соленоид; 8 - сериесная обмотка; 9 - шунтовая обмотка; 10 - аккумуляторная батарея; Н, Е - обмотки

При замыкании контактов выключателя стартера напряжение аккумуляторной батареи поступает в цепь удерживающей обмотки Н (см. рис.) соленоида и управляющего реле. Реле начинает работать, но удерживается в первом контактном положении (первая стадия) посредством разобщающего рычага и фиксатора. Напряжение аккумуляторной батареи прикладывается к втягивающей обмотке Е соленоида и шунтовой обмотке электродвигателя, которые соединены между собой параллельно и последовательно с якорем. Стартер начинает вращаться, но развивает только небольшой крутящий момент из-за высоких сопротивлений в обмотках, соединенных последовательно с обмоткой якоря. Соленоид одновременно с этим смещает шестерню стартера в направлении зубчатого венца маховика и вскоре после окончания зацепления освобождается заблокированное управляющее реле, которое сразу же перемещается во второе контактное положение (вторая стадия). Пусковой ток начинает проходить через сериесную обмотку и якорь. Переключающий контакт на соленоиде соединяет шунтовую обмотку параллельно якорю и сериесной обмотке.

 

Виды обгонных муфт

Обгонная муфта роликового типа

starter 05

Стартеры небольшого и среднего размеров обычно снабжаются обгонными муфтами, в которых ролики с помощью пружин отжимаются в клинообразные выемки между наружной обоймой муфты и ее внутренней обоймой (валом шестерни). Когда стартер начинает работать, крутящий момент усиливает эффект заклинивания роликов и это-момент передается от наружной обоймы на вал шестерни.
Когда крутящий момент меняет свой знак на противоположный, ролики выходят из клинообразных выемок, и шестерня начинает вращаться свободно.

 

Многодисковая обгонная муфта

starter 06

1 - ведущий вал (соединен с шестерней стартера): 2 - нажимная пружина: 3 - ведущий элемент с наружными дисками; 4 - внутренняя муфта с внутренними дисками: 5 - спиральные шлицы; 6 - ведущий фланец (связан с якорем электродвигателя стартера)

 

Используется в стартерах грузовых автомобилей. Ведущий элемент с наружными дисками соединен с якорем стартера, вал и шестерня стартера принудительно соединены друг с другом. Внутренне диски размещены в направляющей внутренней муфты, которая может перемещаться в радиальном направлении п спиральным шлицам ведущего вала. В условиях отсутствия нагрузки диски ежи маются пружиной с небольшой силой, что позволяет передавать через муфту толь ко незначительный крутящий момент При увеличении нагрузки внутренняя муфта перемещается спиральными шлицами в направлении нажимной пружинь сжимая ее и обеспечивая одновременно этим более сильное сжатие дисков.

 

Многодисковая обгонная муфта может пере давать повышенный крутящий момент при увеличении нагрузки стартера.

starter 07

1 - шестерня стартера; 2 - сухарь; 3 - радиальные зубья; 4 - разъединяющее кольцо; 5 - гайка полумуфты; 6 - пружина; 7 - спиральные шлицы; 8 — резиновый буфер; 9 - втулка; 10 - шлицы

Применяется в стартерах грузовых автомобилей. Муфта соединена с валом якоря, перемещаясь в осевом направлении (операция зацепления) за счет взаимодействия шлицев вала и втулки. Наружная поверхность втулки выполнена со спиральными шлицами и обеспечивает передачу крутящего момента к гайке полумуфты, которая затем передает этот момент к шестерне стартера через зубья пилообразной формы. После начала работы двигателя шестерня стартера завинчивает гайку полумуфты в обратном направлении через мелкопрофильные зубья и прерывает передачу усилий. Разъединяющее кольцо при этом также сдвигается назад и удерживается в разъединяющем положении сухарями. Центробежное усилие, создаваемое сухарями при малых скоростях вращения шестерни стартера, недостаточно для удержания обгонной муфты в положении разъединения, и пружина снова обеспечивает введение полумуфты в зацепление.

Защита стартера

starter 08

После продолжительной работы стартера, например, при пуске двигателя в условиях низких температур, он должен выключаться для охлаждения. В стартерах больших размеров используются термовыключатели (встраиваемые в угольные щетки электродвигателя). В стартерных системах с дистанционным управлением (на автобусах с задним расположением двигателя, электрогенераторах, используемых в аварийных ситуациях, дизельных двигателях тепловозов и т.п.) процесс пуска не может всегда контролироваться водителем автомобиля.
Ошибки при управлении такими операциями могут привести к повреждению стартера или зубчатого венца маховика двигателя.
Реле блокировки включения стартера. Это реле блокирует случайное включение стартера при уже работающем двигателе и предотвращает слишком продолжительное действие стартера после запуска двигателя. В качестве индикатора пуска двигателя используется напряжение генератора, которое при этом возрастает. После выключения зажигания генератор больше не создает нужного напряжения; в этом случае таймер, встроенный в реле, блокирует любые попытки повторного включения стартера в течение нескольких секунд.
Реле повторного включения. Это реле предотвращает выполнение операций по запуску двигателя, если шестерня все еще не вошла в зацепление с зубчатым венцом маховика, но стартер остается включенным. Реле прерывает поступление тока в обмотки.

Опубликовано в Автословарь

При проектировании нового двигателя немецкий инженер Рудольф Дизель ставил перед собой задачу создания экономичного, удобного и простого двигателя, способного вытеснить паровую машину с её опасным и громоздким паровым котлом и низким КПД. Он разработал первые образцы новой установки, работающие на керосине, а успех ей был обеспечен русскими (советскими) инженерами, заствившими немецкую технику работать на сырой нефти.

Первый одноцилиндровый двигатель Дизеля

Патент на новый вид двигателя был получен изобретателем в 1892 году. Пять лет ему понадобилось, чтобы найти инвесторов и изготовить первый дизельмотор мощностью в 20 лошадиных сил. Его КПД был равен 34 процента, что в несколько раз выше, чем у использовавшихся тогда паровых машин.

dvigatel

Мотор Дизеля не нуждается ни в котле, ни в газогенераторе, ни в карбюраторе, поскольку топливо вводится непосредственно в цилиндры. Теоретически дизельмотор проектировался для работы на любом жидком топливе, в том числе и на сырой нефти, которой в конце 19 века отапливались паровые котлы. Кроме того, дизельмотор не требует наличия системы зажигания. Работает двигатель по новому циклу, получившему название цикла Дизеля. При первом такте он засасывает чистый воздух, при втором такте обратным ходом поршня воздух подвергется сжатию с такой силой, что нагревался до температуры около 750 градусов, и вводимое в цилиндр при третьем такте топливо самовозгарается в раскалённом воздухе и расширяющиеся газы двигают поршень. В четвёртом такте продукты сгорания выдавливаются из двигателя. Чтобы топливо сгорало, а не взрывалось, впрыск его осуществляется постепенно. Кроме клапанов, автоматически открывавшихся для впуска топлива и воздуха и для выхлопа, двигатель приводит в действие ещё компрессор, н

агнетающий в отдельный резервуар воздух. Этот сжатый воздух употребляется для впрыскивания в цилиндр топлива, и для запуска двигателя в ход.

В первом образце в качестве горючего употреблялся керосин. Самому Дизелю и заводам, начавшим строить новые двигатели для производственных целей, не удалось заставить двигатель работать на нефти. Это было сделано в России, что и обеспечило новому двигателю победное шествие на рынок.

Первоначально дизельные двигатели устанавливались на грузовые автомобили, суда и военную технику, то есть туда, где надежность и экономичность важнее чем размеры, вес и комфорт. Первый серийный автомобиль, в котором был установлен дизель был выпущен только 1935 году. Это был Mercedes-Benz 260 (W170). Такие особенности дизеля, как экономичность, высокий крутящий момент во всем диапазоне оборотов, и особенно на низких частотах вращения, а также доступное топливо, делают его предпочтительным вариантом для внедорожника, предназначенного для работы в тяжелых условиях.

Современные дизели последних поколений уже весма близки к бензиновым двигателям по шумности и удельным характеристикам, сохраняя при этом преимущества в экономичности и надежности.

 Конструктивные особенностиъ

В дизельном двигателе существенно усилены клапана, поскольку степень сжатия в цилиндрах у него примерно вдвое выше чем у бензинового). В результате дизельный двигатель при равном объеме камеры сгорания имеет больший вес и габариты.

К специфическим недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и старта холодного двигателя. Впрочем, в современных конструкциях эти проблемы уже не являются такими очевидными.

Основное различие дизелей заключается в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания - их называю дизелями с непосредственным впрыском - топливо впрыскивается в надпоршневое пространство. Камера сгорания находится непосредственно в поршне двигателя. Такой способ в основном используется на низкооборотных ДВС с большим рабочим объемом. Наиболее же распространы на легковых автомобилях двигатели с раздельной камерой сгорания. В них впрыск топлива осуществляется в дополнительную камеру. Чаще всего это вихревая камера, выполненная в головке блока цилиндров. От нее к цилиндру устроен специальный канал таким образом, что при сжатии воздух, попадая в вихревую камеру, интенсивно закручивается, что улучшает процессы самовоспламенения и образования смеси. Самовоспламенение начинается в вихревой камере и продолжается в основной камере сгорания. При такой конструкции снижается темп нарастания давления в цилиндрах, в результате чего шумность такого двигателя значительно ниже. Вихрекамерные двигатели в настоящее время составляют подавляющее большинство среди устанавливаемых на легковые автомобили.

Ключевые узлы дизельного агрегата

Важнейшей системой дизельного двигателя является система топливоподачи. Функция ее - подача строго дозированного объема топлива в точно подобранный момент времени под определенным давлением. Высокое давление топлива и повышенные требования к точности делают топливную систему дизеля сложной и дорогой. Основные элементы: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр. ТНВД предназначен для подачи топлива к форсункам по строго заданной программе, в соответствии с режимом работы двигателя и действий водителя.

 Топливные насосы

Современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды водителя. Манипулируя педалью газа, водитель не изменяет непосредственно объем подаваемого топлива, а меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД двух типов : рядные многоплунжерные и распределительного типа. Рядные насосы в настоящее время применяются редко, хотя по своей конструкции являются наиболее надежными. Наиболее распространены ТНВД распределительного типа. В этих моделях система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам. Насосы распределительного типа получили широкое распространение на дизелях для легковых автомобилей. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов.

 Форсунки

Форсунка вместе с ТНВД обеспечивает дозировку количества топлива, подаваемого в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса воспламенения и сгорания. Применяются форсунки двух типов: со шрифтовым или многодырчатым распределителем. Форсунка на двигателе работает в суровых условиях, поскольку распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из высокожаропрочных материалов с особой точностью и является прецизионным элементом.

forsunki 01

 Топливные фильтры

Параметры топливного фильтра, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать типу двигателя. Одной из функций ТФ является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. В верхней части фильтра установливается насос ручной подкачки для удаления воздуха из топливной системы. На современных моделях двигателя устанавливается система электроподогрева топливного фильтра, позволяющая облегчить запуск двигателя, предотвращая забивание фильтра парафинами, образующимися при кристаллизации дизельного топлива в зимних условиях.

 Запуск двигателя

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы - свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900 градусов С, обеспечивая подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. Электропитание со свечи снимается автоматически через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предварительного подогрева гарантируют легкий пуск исправного дизеля до температуры 25-30 градусов.

 Преимущества дизельных двигателей

  • экономичность: при равном объеме и мощности расход топлива меньше на 15-25%, при том что и стоимость топлива для дизеля ниже;
  • хорошая тяга на низких оборотах двигателя. Дизель явно выигрывает при использовании на вредорожниках и грузовых автомобилях;
  • отсутствие свечей зажигания, проводов, трамблёров - потенциально склонных к отказу систем автомобиля;
  • большая износостойкость. Пробег автомобиля с дизельным двигателем до его капремонта больше в 2-3 раза чем автомобиля с аналогичным бензиновым движком.

Недостатки дизельных двигателей

  • несколько меньше динамика разгона.
  • больший шум и вибрация при работе двигателя;
  • чувствительная топливная система
  • ухудшение запуска при низких температурах;
  • не терпит высоких оборотов, и как следствие высоких скоростей, поскольку топливо не успевает догорать в цилиндрах;
  • большая масса, меньшая литровая мощность;
  • чаще требуется замена масла и фильтров, масло необходимо более высокого качества;
  • для запуска дизельного двигателя необходим аккумулятор большей емкости и более мощный стартер;
  • ремонт дизельмоторов обычно дороже ремонта бензинового двигателя того же класса.
Опубликовано в Автословарь

Развитие технологий никогда не прекращается. Промышленности необходимы свечи вторичного накаливания. Свечи накаливания должны действовать не только во время запуска, но также и в течение около 3 минут во время периода прогрева, в зависимости от температуры. Таким образом, с самого начала обеспечиваются высокие показатели хода и низкая степень эмиссии. Это неизбежно повышает требования к долговечности свеч накаливания. В будущем будут использоваться дизельные двигатели с низкой компрессией, которые вследствие увеличенного наддува достигают большой мощности, при одновременно низкой эмиссии. Правда, подобные концепции имеют слабые пусковые характеристики, обусловленные конструкцией. Высокотемпературные свечи накаливания из керамики имеют в этом смысле некоторые преимущества, поскольку они нагреваются значительно сильнее, чем металлические свечи накаливания, а также имеют продолжительный срок службы.

Благодаря прогрессивной технологии свеч накаливания, различия в процессах запуска дизельного двигателя и двигателя с принудительным зажиганием в будущем будут практически не заметны.

Опубликовано в Технологии

Чтобы выполнить надёжный холодный запуск, прежде всего, при низкой температуре окружающего воздуха, дизельные двигатели должны быть оснащены свечами накаливания.

Причина: На момент запуска цилиндры и двигатель сильно охлаждены. Они забирают дополнительную энергию из без того уже холодного окружающего воздуха. Посредством только сжатия воздуха не может быть достигнута температура, необходимая для самовоспламенения.

Теперь в дело вступает свеча накаливания. Она вкручена в головку цилиндра. Её калильная трубка выступает в камеру сгорания и нагревается, как только включается питание. В зависимости от типа свечи накаливания, её температура повышается до 1000 °C. При этом свеча также нагревает камеру сгорания. Этот процесс перед собственно запуском двигателя называется "разогревом".

В ходе процесса разогрева ток сначала проходит через болт клеммы и регулировочную спираль к нагревательной спирали, которая вследствие этого быстро нагревается и вызывает накаливание конца штифта. В зависимости от типа двигателя, конец штифта нагревается с различной скоростью. При этом дополнительно повышается температура регулировочной спирали, уже нагретой проходящим током. Как следствие, увеличивается электрическое сопротивление, а ток уменьшается, чтобы предотвратить повреждение штифта накаливания.

 

Вторичное накаливание - Что это такое?

Накаливание после запуска, при работе двигателя, сокращает образование белого/голубого дыма и устраняет детонационный стук, характерный для холодного запуска. Калильное устройство состоит из саморегулирующихся свеч накаливания из металла или керамики, электронного реле времени накаливания свечи и температурного датчика.

Саморегулирующиеся штифтовые свечи накаливания имеют защиту от перегрева, действие которой выражается в ограничении подачи тока от батарей к свече, в случае повышения температуры. Но при работе двигателя напряжение увеличивается. При этом некоторые свечи накаливания могут перегореть. Это происходит в связи с тем, что после запуска токопроводящие свечи подвергаются ещё и воздействию температуры сгорания, т.е. свечи нагреваются изнути и снаружи.

На фото: Различные стадии накаливания свечей

Опубликовано в Технологии

Английское выражение COMMON RAIL обозначает одинаково высокое давление в трубке-аккумуляторе(рампе), которое распределяется по всем цилиндрам. Погружной электрический или вакуумный насос поставлет дизельное топливо из бака через подогреватель топлива и фильтр к насосу высокого давления. Он приводится в работу двигателем и направляет топливо под высоким давлением в рампу. Для нормальной работы некоторых типов систем необязательно поддерживать постоянно самое высокое давление. Трубки рампы имеют одинаковую длину и оканчиваются инжекторами. На рампе также расположен регулятор давления, который отправляет лишнюю часть топлива обратно в бак через охладитель. С помощью датчика давления в рампе Блок Управления Двигателем может получать информацию о давлении в рампе и контролировать его.

 

Датчики:

Основными датчики, которые используются в системе - это датчик давления в рампе, датчик потока воздуха, датчики положений распредвала и коленвала, температурные датчики двигателя и входящего воздуха, датчик положения педали аккселератора, система подогрева.

 

Активаторы:

Соленоидны в системе Common rail должны реагировать в течение полсекудны: это инжектора, клапан регулятор давления в рампе, клапан турбонадува и клапана рециркуляции выхлопных газов.

 

Инжектора:

Инжектора включаются по команде контроллера блока EDC, посредством магнитного соленоида. Гидравлическая сила давления позволяет открывать и закрывать инжектор, однако активация происходит с блока управления. Некоторые инжектора имеют пьезокристаллы. Под влиянием магнитного поля они увеличиваются в размерах. В инжекторе типа Piezo Inline кристалл находится близко к игле и поэтому в нем не используется механических деталей для включения иглы. В ранних системах применялся двойной впрыск - пилотный и основной для предотвращения детонации. В современных системах используется до шести фаз впрыска. Каждый инжектор производится и тестируется в лаборатории, где ему присваивают определенный код по измеренным данным его работы. После замены инжекторов код должен быть прописан в память блока управления с помощью сканера.

Опубликовано в Технологии
Страница 3 из 3

Social Diesel-TIS

Diesel TIS

Компания "Турбоинвестсервис" предлагает услуги па компьютерной диагностики двигателей, топливной аппаратуры, капитальному ремонту двигателей, головок блока цилиндров, ТНВД всех типов, систем Common Rail, форсунок насоса, PLD-cекций и возобновление турбин.